On Eigenvectors of Nilpotent Lie Algebras of Linear Operators

نویسندگان

چکیده

We give a condition ensuring that the operators in nilpotent Lie algebra of linear on finite dimensional vector space have common eigenvector.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Eigenvectors of Nilpotent Lie Algebras of Linear Operators

We give a condition ensuring that the operators in a nilpotent Lie algebra of linear operators on a finite dimensional vector space have a common eigenvector. Introduction Throughout this paper V is a vector space of positive dimension over a field f and g is a nilpotent Lie algebra over f of linear operators on V . An element u ∈ V is an eigenvector for S ⊂ g if u is an eigenvector for every o...

متن کامل

the structure of lie derivations on c*-algebras

نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.

15 صفحه اول

Some properties of nilpotent Lie algebras

In this article, using the definitions of central series and nilpotency in the Lie algebras, we give some results similar to the works of Hulse and Lennox in 1976 and Hekster in 1986. Finally we will prove that every non trivial ideal of a nilpotent Lie algebra nontrivially intersects with the centre of Lie algebra, which is similar to Philip Hall's result in the group theory.

متن کامل

The structure of a pair of nilpotent Lie algebras

Assume that $(N,L)$, is a pair of finite dimensional nilpotent Lie algebras, in which $L$ is non-abelian and $N$ is an ideal in $L$ and also $mathcal{M}(N,L)$ is the Schur multiplier of the pair $(N,L)$. Motivated by characterization of the pairs $(N,L)$ of finite dimensional nilpotent Lie algebras by their Schur multipliers (Arabyani, et al. 2014) we prove some properties of a pair of nilpoten...

متن کامل

Degenerations of nilpotent Lie algebras

In this paper we study degenerations of nilpotent Lie algebras. If λ, μ are two points in the variety of nilpotent Lie algebras, then λ is said to degenerate to μ , λ→deg μ , if μ lies in the Zariski closure of the orbit of λ . It is known that all degenerations of nilpotent Lie algebras of dimension n < 7 can be realized via a one-parameter subgroup. We construct degenerations between characte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Pure and Applied Mathematics

سال: 2021

ISSN: ['1307-5543']

DOI: https://doi.org/10.29020/nybg.ejpam.v14i4.4086